

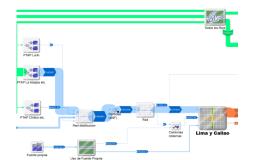
Sustainable Water and Wastewater Management in Urban Growth Centres Coping with Climate Change - Concepts for Lima Metropolitana (Perú) -

"LiWatool" simulator for modelling urban infrastructure systems and scenario simulation of Lima's water and wastewater system

Situation

- Complexity of the water and wastewater system of Lima and Callao
- Multitude of actors and institutions involved with the water and wastewater system
- Variety of potential action measures
- Uncertainty of knowledge about future developments, various scenarios
- Need for balanced discussions and decisions
- -> System simulation as a means to deal with this complexity

Methodology


- Development of a simulator for urban systems on macro level
- Calculation and visualisation of fluxes and resources
- Based on resource network simulation and Material Flux Analysis
- Development by ifak ensured meeting the needs
- Various solvers for systems of linear and non-linear equations
- Highly flexible, can be extended and modified by the user
- System model of Lima and Callao's water supply and wastewater systems, applied in Round Table meetings for the evaluation of scenarios and measures
- Evaluation of demand versus supply, consumption, energy, discharges of organic material, revenue by tariffs

Results

- "LiWatool" simulator, easy-to-use simulator for the conceptual modelling of urban infrastructure systems; multilingual features
- Application to water and wastewater systems of Lima and Callao
- Simulation and discussion of scenarios and of potential action measures with the relevant actors
- Training courses on macromodelling with LiWatool
- Transfer applications to other cities

Contact: Dr. Manfred Schütze, ifak e.V. Magdeburg, manfred.schuetze@ifak.eu

Rio Planta agua potable Distrito Colectores Oceano Camiones RedZ1 Aguas subterraneas lookUp Planta agua residual

Criterio	Valor	Unidad
Consumo deseado por hab.	125.886	l/hab/dia
Agua potable suministrado	19.797	m3/s
Consumo agua potable deseado total	22.929	m3/s
Demanda cludad	35.853	m3/s
Demanda total (incl. riego)	39.35	m3/s
Oferta total (incl. rios,)	38.091	m3/s
Oferta - Demanda total	-1.259	m3/s
Ingreso por tarifas	1790.577	milliones PEN/a
Consumo de energía	189.905	miliones kWh/a
Desagües	716.962	miliones m3/a
Descarga DBO al mar	242.76	tonadas DBO/a

Project co-ordination:

Dr. Manfred Schütze, ifak e. V. Magdeburg, Werner-Heisenberg-Str. 1, 39106 Magdeburg, Germany, manfred.schuetze@ifak.eu, Phone: +49-391-9901470

Ing. Christian D. León, ZIRIUS, University of Stuttgart, Project office, Calle Elias Aguirre 126, Of. 504; Lima 18, Perú leon@lima-water.de, Phone: +51-1-4440149

http://www.lima-water.de

